Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

NIMCET Previous Year Questions (PYQs)

NIMCET Hyperbola PYQ


NIMCET PYQ
If the foci of the ellipse $\frac{x^2}{25}+\frac{y^2}{b^2}=1$ and the hyperbola $\frac{x^2}{144}-\frac{y^2}{81}=\frac{1}{25}$ are coincide, then the value of $b^2$





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2022 PYQ

Solution


NIMCET PYQ
At how many points the following curves intersect $\frac{{y}^2}{9}-\frac{{x}^2}{16}=1$ and $\frac{{x}^2}{4}+\frac{{(y-4)}^2}{16}=1$





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2024 PYQ

Solution


NIMCET PYQ
If ${\Bigg{(}\frac{x}{a}\Bigg{)}}^2+{\Bigg{(}\frac{y}{b}\Bigg{)}}^2=1$, $(a{\gt}b)$ and ${x}^2-{y}^2={c}^2$ cut at right angles, then





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2022 PYQ

Solution

If $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ and $\frac{x^2}{c^2}+\frac{y^2}{d^2}=1$ are orthogonal.
Then 
$a^2-b^2=c^2-d^2$

Similarly 
If $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ and $x^2-y^2=c^2$ are orthogonal.
It means
$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ and $\frac{x^2}{c^2}+\frac{y^2}{-c^2}=1$ are orthogonal

Then 
$a^2-b^2=c^2-(-c^2)$
$a^2-b^2=2c^2$



NIMCET PYQ
Equation of the common tangents with a positive slope to the circle and  is





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2018 PYQ

Solution


NIMCET PYQ
The equation of the hyperbola with centre at the region, length of the transverse axis is 6 and one focus (0, 4) is





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2017 PYQ

Solution


NIMCET PYQ
Find foci of the equation $x^2 + 2x – 4y^2 + 8y – 7 = 0$





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2023 PYQ

Solution



NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...