Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

NIMCET Previous Year Questions (PYQs)

NIMCET Limit PYQ



NIMCET PYQ
$\lim _{{x}\rightarrow1}\frac{{x}^4-1}{x-1}=\lim _{{x}\rightarrow k}\frac{{x}^3-{k}^2}{{x}^2-{k}^2}=$, then find k





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2023 PYQ

Solution


NIMCET PYQ
Let $f(x)=\frac{x^2-1}{|x|-1}$. Then the value of $lim_{x\to-1} f(x)$ is





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2023 PYQ

Solution



NIMCET PYQ
The value of the limit $$\lim _{{x}\rightarrow0}\Bigg{(}\frac{{1}^x+{2}^x+{3}^x+{4}^x}{4}{\Bigg{)}}^{1/x}$$ is





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2024 PYQ

Solution


NIMCET PYQ
Which of the following is NOT true?





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2022 PYQ

Solution


NIMCET PYQ
For $a\in R$ (the set of al real numbers), $a \ne 1$, $\lim _{{n}\rightarrow\infty}\frac{({1}^a+{2}^a+{\ldots+{n}^a})}{{(n+1)}^{a-1}\lbrack(na+1)(na+b)\ldots(na+n)\rbrack}=\frac{1}{60}$ . Then one of the value of $a$ is





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2022 PYQ

Solution


NIMCET PYQ
$\lim_{x\to \infty} (\frac{x+7}{x+2})^{x+5}$ equal to





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2021 PYQ

Solution


NIMCET PYQ
Let f(x) be a polynomial of degree four, having extreme value at x = 1 and x = 2. If $\lim _{{x}\rightarrow0}[1+\frac{f(x)}{{x}^2}]=3$, then f(2) is





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2017 PYQ

Solution

Given it has extremum values at x=1 and x=2
⇒f′(1)=0  and  f′(2)=0
Given f(x) is a fourth degree polynomial 
Let  $f(x)=a{x}^4+b{x}^3+c{x}^2+dx+e$
Given 
$\lim _{{x}\rightarrow0}[1+\frac{f(x)}{{x}^2}]=3$
$\lim _{{x}\rightarrow0}\lbrack1+\frac{a{x}^4+b{x}^3+c{x}^2+\mathrm{d}x+e}{{x}^2}\rbrack=3$
$\lim _{{x}\rightarrow0}\lbrack1+a{x}^2+bx+c+\frac{d}{x}+\frac{e}{{x}^2}\rbrack=3$
For limit to have finite value, value of 'd' and 'e' must be 0
⇒d=0  & e=0
Substituting x=0 in limit 
⇒ c+1=3
⇒ c=2
$f^{\prime}(x)=4a{x}^3+3b{x}^2+2cx+d$
$x=1$ and $x=2$ are extreme values,
⇒$f^{\prime}(1)=0$ and $f^{\prime}(2)=0
⇒ $4a+3b+4=0$ and $32a+12b+8=0$ 
By solving these equations
we get, $a=\frac{1}{2}$ and $b=-2$
So,
$f(x)=\frac{x^{4}}{2}-2x^{3}+2x^{2}$
⇒$f(x)=x^{2}(\frac{x^{2}}{2}-2x+2)$
⇒$f(2)=2^{2}(2-4+2)$
⇒$f(2)=0$


NIMCET PYQ





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2017 PYQ

Solution

Function is the form of  therefore using by L'Hospital rule
Again apply L'Hospital Rule,
Putting x = 0, we get 
 


NIMCET PYQ
Find 





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2020 PYQ

Solution


NIMCET PYQ
If $f(x)=\lim _{{x}\rightarrow0}\, \frac{{6}^x-{3}^x-{2}^x+1}{\log _e9(1-\cos x)}$ is a real number then $\lim _{{x}\rightarrow0}\, f(x)$





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2023 PYQ

Solution



NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...