Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations - NIMCET


Best NIMCET Coaching
Aspire Study
Online Classes, Classroom Classes
and More.

Aspire Study Library


Question Id : 11626 | Context :NIMCET 2024

Question

The number of distinct real values of $\lambda$ for which the vectors ${\lambda}^2\hat{i}+\hat{j}+\hat{k},\, \hat{i}+{\lambda}^2\hat{j}+j$ and $\hat{i}+\hat{j}+{\lambda}^2\hat{k}$ are coplanar is
πŸŽ₯ Video solution / Text Solution of this question is given below:

Given: Vectors:

  • $\vec{a} = \lambda^2 \hat{i} + \hat{j} + \hat{k}$
  • $\vec{b} = \hat{i} + \lambda^2 \hat{j} + \hat{k}$
  • $\vec{c} = \hat{i} + \hat{j} + \lambda^2 \hat{k}$

Condition: Vectors are coplanar ⟹ Scalar triple product = 0

$\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$

Step 1: Use determinant:

$ \vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} \lambda^2 & 1 & 1 \\ 1 & \lambda^2 & 1 \\ 1 & 1 & \lambda^2 \end{vmatrix} $

Step 2: Expand the determinant:

$ = \lambda^2(\lambda^2 \cdot \lambda^2 - 1 \cdot 1) - 1(1 \cdot \lambda^2 - 1 \cdot 1) + 1(1 \cdot 1 - \lambda^2 \cdot 1) \\ = \lambda^2(\lambda^4 - 1) - (\lambda^2 - 1) + (1 - \lambda^2) $

Simplify:

$= \lambda^6 - \lambda^2 - \lambda^2 + 1 + 1 - \lambda^2 = \lambda^6 - 3\lambda^2 + 2$

Step 3: Set scalar triple product to 0:

$\lambda^6 - 3\lambda^2 + 2 = 0$

Step 4: Let $x = \lambda^2$, then:

$x^3 - 3x + 2 = 0$

Factor:

$x^3 - 3x + 2 = (x - 1)^2(x + 2)$

So, $\lambda^2 = 1$ (double root), or $\lambda^2 = -2$ (discard as it's not real)

Thus, real values of $\lambda$ are: $\lambda = \pm1$

βœ… Final Answer: $\boxed{2}$ distinct real values

πŸ“² Install Aspire Study App

Get MCA exam-wise questions, solutions, test series & updates instantly on your phone.

πŸš€ Install Now


Aspire Study Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More


Aspire Study Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...