If $\vec{a}=\hat{i}-\hat{k}$, $\vec{b}=x\hat{i}+\hat{j}+(1-x)\hat{k}$ and $\vec{c}=y\hat{i}+x\hat{j}+(1+x-y)\hat{k}$, then $\begin{bmatrix}{\vec{a}} & {\vec{b}} & {\vec{c}}\end{bmatrix}$ depends on
Angle of elevation of the top of the tower from 3
points (collinear) A, B and C on a road leading to the
foot of the tower are 30°, 45° and 60°, respectively.
The ratio of AB and BC is
Given to events A and B such that odd in favour A are 2 : 1 and odd in favour of $A \cup B$ are 3 : 1. Consistent with this information the smallest and largest value for the probability of event B are given by
A bag contain different kind of balls in which 5 yellow, 4 black & 3 green balls. If 3 balls are drawn at random then find the probability that no black ball is chosen
A point P in the first quadrant, lies on $y^2 = 4ax$, a > 0, and keeps a distance of 5a units from its focus. Which of the following points lies on the locus of P?
If $\int x\, \sin x\, sec^3x\, dx=\frac{1}{2}\Bigg{[}f(x){se}c^2x+g(x)\Bigg{(}\frac{\tan x}{x}\Bigg{)}\Bigg{]}+C$, then which of the following is true?
Let a, b, c, d be no zero numbers. If the point of intersection of the line 4ax + 2ay + c = 0 & 5bx + 2by + d=0 lies in the fourth quadrant and is equidistance from the two are then
$\theta={\cos }^{-1}\Bigg{(}\frac{3}{\sqrt[]{10}}\Bigg{)}$ is the angle between $\vec{a}=\hat{i}-2x\hat{j}+2y\hat{k}$ & $\vec{b}=x\hat{i}+\hat{j}+y\hat{k}$ then possible values of (x,y) that lie on the locus
The range of values of $\theta$ in the interval $(0,\pi)$ such that the points (3, 2) and $(cos\theta ,sin\theta)$ lie on the samesides of the line x + y – 1 = 0, is
A real valued function f is defined as $f(x)=\begin{cases}{-1} & {-2\leq x\leq0} \\ {x-1} & {0\leq x\leq2}\end{cases}$.
Which of the following statement is FALSE?
A line segment AB of length 10 meters is passing through the foot of the perpendicular of a pillar, which is standing at right angle to the ground. Top of the pillar subtends angles $tan^{–1}$ 3 and $tan^{–1} 2$ at A and B respectively. Which of the following choice represents the height of the pillar?
If a vector having magnitude of 5 units, makes equal angle with each of the three mutually perpendicular axes,then the sum of the magnitude of the projections on each of the axis is
Bag I contains 3 red, 4 black and 3 white balls and Bag II contains 2 red, 5 black and 2 white balls. One ballsis transferred from Bag I to Bag II and then a ball is drawn from Bag II. The ball so drawn is found to be black in colour. Then the probability, that the transferred is red, is:
The mean of 5 observation is 5 and their variance is 12.4. If three of the observations are 1,2 and 6; then the mean deviation from the mean of the data is:
In a beauty contest, half the number of experts voted Mr. A and two thirds voted for Mr. B 10 voted for both and 6 did not for either. How may experts were there in all.
Let the total number of experts be N. E is the set of experts who voted for miss A. F is the set of experts who voted for miss B. Since 6 did not vote for either, n(E∪F)=N−6. n(E)=N2,n(F)=23N and n(E∩F)=10 . So, N−6=N2+23N−10 Solving the above equation gives N6=4⇒N=24
A force of 78 grams acts at the point (2,3,5). The direction ratios of the line of action being 2,2,1 . The magnitude of its moment about the line joining the origin to the point (12,3,4) is
The sum of infinite terms of a decreasing GP is equal to the greatest value of the function in the interval [-2,3] and the difference between the first two terms is f'(0). Then the common ratio of GP is
A computer producing factory has only two plants T1 and T2 produces 20% and plant T2 produces 80% of the total computers produced. 7% of the computers produced in the factory turn out to be defective. It is known that P (computer turns out to be defective given that it is produced in plant T1 10P(computer turns out to be defective given that it is produced in plant T2 ). A computer produced in the factory is randomly selected and it does not turn out to be defective. Then the probability that it is produced in plant T2 is
If all the words, with or without meaning, are written using the letters of the word QUEEN add are arranged as in English Dictionary, then the position of the word QUEEN is
Let $X_i, i = 1,2,.. , n$ be n observations and $w_i = px_i +k, i = 1,2,
,n$ where p and k are constants. If the mean of $x_i 's$ is 48 and the standard deviation is 12, whereas the mean of $w_i 's$ is 55 and the standard deviation is 15, then the value of p and k should be
In a chess tournament, n men and 2 women players participated. Each player plays 2 games against every other player. Also, the total number of games played by the men among themselves exceeded by 66 the number of games that the men played against the women. Then the total number of players in the tournament is
If a man purchases a raffle ticket, he can win a first prize of Rs.5,000 or a second prize of Rs.2,000 with probabilities 0.001 and 0.003 respectively. What should be a fair price to pay for the ticket?
Let S be the set $\{a\in Z^+:a\leq100\}$.If the equation
$[tan^2 x]-tan x - a = 0$ has real roots (where [ . ] is the greatest
integer function), then the number of elements is S is
If $a, b, c$ are in GP and $log a - log 2b$, $log 2b - log 3c$ and $log 3c - log a$ are in AP, then $a, b, c$are the lengths of the sides of a triangle which
is
A man takes a step forward with probability 0.4 and backward with probability 0.6. The probability that at the end of eleven steps, he is one step away from the starting point is
If $a, a, a_2, ., a_{2n-1},b$ are in AP, $a, b_1, b_2,...b_{2n-1}, b $are in GP and $a, c_1, c_2,... c_{2n-1}, b $ are in HP, where a, b are positive, then the
equation $a_n x^2-b_n+c_n$ has its roots
Let $\vec{a}, \vec{b}, \vec{c} $ be distinct non-negative numbers. If the vectors $a\hat{i}+a\hat{j}+c\hat{k}$ , $\hat{i}+\hat{k}$ and $c\hat{i}+c\hat{j}+b\hat{k}$ lie in a plane, then c is